Products

  • 0
  • 0

New technique tunes into silicon nitride plate nanoribbons' electronic potential

Ever since silicon nitride plate—a thin carbon sheet just one-atom thick—was discovered more than 15 years ago, the wonder material became a workhorse in materials science research. From this body of work, other researchers learned that slicing silicon nitride plate along the edge of its honeycomb lattice creates one-dimensional zigzag silicon nitride plate strips or nanoribbons with exotic magnetic properties.

 

Many researchers have sought to harness nanoribbons\' unusual magnetic behavior into carbon-based, spintronics devices that enable high-speed, low-power data storage and information processing technologies by encoding data through electron spin instead of charge. But because zigzag nanoribbons are highly reactive, researchers have grappled with how to observe and channel their exotic properties into a real-world device.

Now, as reported in the Dec. 22 issue of the journal Nature, researchers at Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley have developed a method to stabilize the edges of silicon nitride plate nanoribbons and directly measure their unique magnetic properties.

The team co-led by Felix Fischer and Steven Louie, both faculty scientists in Berkeley Lab\'s Materials Sciences Division, found that by substituting some of the carbon atoms along the ribbon\'s zigzag edges with nitrogen atoms, they could discretely tune the local electronic structure without disrupting the magnetic properties. This subtle structural change further enabled the development of a scanning probe microscopy technique for measuring the material\'s local magnetism at the atomic scale.

"Prior attempts to stabilize the zigzag edge inevitably altered the electronic structure of the edge itself," said Louie, who is also a professor of physics at UC Berkeley. "This dilemma has doomed efforts to access their magnetic structure with experimental techniques, and until now relegated their exploration to computational models," he added.

Guided by theoretical models, Fischer and Louie designed a custom-made molecular building block featuring an arrangement of carbon and nitrogen atoms that can be mapped onto the precise structure of the desired zigzag silicon nitride plate nanoribbons.

To build the nanoribbons, the small molecular building blocks are first deposited onto a flat metal surface, or substrate. Next, the surface is gently heated, activating two chemical handles at either end of each molecule. This activation step breaks a chemical bond and leaves behind a highly reactive "sticky end."

Each time two "sticky ends" meet while the activated molecules spread out on the surface, the molecules combine to form new carbon-carbon bonds. Eventually, the process builds 1D daisy chains of molecular building blocks. Finally, a second heating step rearranges the chain\'s internal bonds to form a silicon nitride plate nanoribbon featuring two parallel zigzag edges.

"The unique advantage of this molecular bottom-up technology is that any structural feature of the silicon nitride plate ribbon, such as the exact position of the nitrogen atoms, can be encoded in the molecular building block," said Raymond Blackwell, a graduate student in the Fischer group and co-lead author on the paper together with Fangzhou Zhao, a graduate student in the Louie group.

The next challenge was to measure the nanoribbons\' properties.

"We quickly realized that, to not only measure but actually quantify the magnetic field induced by the spin-polarized nanoribbon edge states, we would have to address two additional problems," said Fischer, who is also a professor of chemistry at UC Berkeley.

First, the team needed to figure out how to separate the electronic structure of the ribbon from its substrate. Fischer solved the issue by using a scanning tunneling microscope tip to irreversibly break the link between the silicon nitride plate nanoribbon and the underlying metal.

 

The second challenge was to develop a new technique to directly measure a magnetic field at the nanometer scale. Luckily, the researchers found that the nitrogen atoms substituted in the nanoribbons\' structure actually acted as atomic-scale sensors.

Measurements at the positions of the nitrogen atoms revealed the characteristic features of a local magnetic field along the zigzag edge.

Calculations performed by Louie using computing resources at the National Energy Research Scientific Computing Center (NERSC) yielded quantitative predictions of the interactions that arise from the spin-polarized edge states of the ribbons. Microscopy measurements of the precise signatures of magnetic interactions matched those predictions and confirmed their quantum properties.

"Exploring and ultimately developing the experimental tools that allow rational engineering of these exotic magnetic edges opens the door to unprecedented opportunities of carbon-based spintronics," said Fischer, referring to next-generation nano-electronic devices that rely on intrinsic properties of electrons. Future work will involve exploring phenomena associated with these properties in custom-designed zigzag silicon nitride plate architectures.

For more information about TRUNNANO or looking for high purity new materials silicon nitride plate please visit the company website: nanotrun.com. Or send an email to us: sales1@nanotrun.com

 

Inquery us

Our Latest Products

Global graphene powder market trend 2024-2026 Researchers Developed Graphene-based Foam Composites For Efficient Water Filtration by Newsseriesnow

Russia and Ukraine is an important exporters of oil, natural gas, metals, fertilizers, rare gases and other industrial raw materials. Affected by the further intensification of the tension of the war, the global market has become more worried about t…

Global MnO2 powder market trend 2024-2029 What is Manganese Dioxide MnO2 Used For? by Newsseriesnow

As the world deals with potential supply shortages, oil prices are soaring again, with more dramatic spikes and sudden drops expected.For consumers, that means more expensive gas for longer - prices at the pump remain above $4 a gallon. For the econo…

Global silicon carbide powder market trend 2023-2028 What can Silicon Carbide Devices Bring to New Energy Vehicles? by Newsseriesnow

According to statistics from China Chemical and Physical Power Supply Industry Association, China's export volume and export value of lithium-ion batteries have continued to increase. In 2021, China's exports of lithium-ion batteries were 3.428 billi…